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Empirical models of crop–weed competition are integral components of bioeconomic models, which depend on
predictions of the impact of weeds on crop yields to make cost-effective weed management recommendations. Selection of
the best empirical model for a specific crop–weed system is not straightforward, however. We used information–theoretic
criteria to identify the model that best describes barley yield based on data from barley–wild oat competition experiments
conducted at three locations in Montana over 2 yr. Each experiment consisted of a complete addition series arranged as a
randomized complete block design with three replications. Barley was planted at 0, 0.5, 1, and 2 times the locally
recommended seeding rate. Wild oat was planted at target infestation densities of 0, 10, 40, 160, and 400 plants m22. Twenty-
five candidate yield models were used to describe the data from each location and year using maximum likelihood estimation.
Based on Akaike’s Information Criterion (AIC ), a second-order small-sample version of AIC (AICc), and the Bayesian
Information Criterion (BIC), most data sets supported yield models with crop density (Dc), weed density (Dw), and the relative
time of emergence of the two species (T ) as variables, indicating that all variables affected barley yield in most locations. AIC,
AICc, and BIC selected identical best models for all but one data set. In contrast, the Information Complexity criterion,
ICOMP, generally selected simpler best models with fewer parameters. For data pooled over years and locations, AIC, AICc,
and BIC strongly supported a single best model with variables Dc, Dw, T, and a functional form specifying both intraspecific
and interspecific competition. ICOMP selected a simpler model with Dc and Dw only, and a functional form specifying
interspecific, but no intraspecific, competition. The information–theoretic approach offers a rigorous, objective method for
choosing crop yield and yield loss equations for bioeconomic models.
Nomenclature: Wild oat, Avena fatua L. AVEFA; barley, Hordeum vulgare L.
Key words: Crop–weed competition, bioeconomic models, model selection, information criteria, AIC, AICc, BIC,
ICOMP, wild oat, barley, yield, yield loss, relative time of emergence.

Empirical models of crop–weed competition are widely
used to make decisions concerning weed management. Such
models are integral components of bioeconomic models,
which depend on accurate predictions of the impact of weeds
on crop yields to make cost-effective weed management
recommendations. In general, empirical crop–weed competi-
tion models used in bioeconomic models take one of three
basic forms; crop yields, or yield losses, are a function of (1)
either crop or weed density alone, (2) weed and crop density,
or (3) weed and/or crop density and the relative time of
emergence of the crop and weed. Numerous functional
specifications of the explanatory or predictor variables exist for
each model type (reviewed in Willey and Heath 1969;
Cousens 1985a,b; Cousens et al. 1987; Firbank and
Watkinson 1990; Wagner et al. 2007). Because empirical
models play such a pivotal role in the development of weed
management recommendations, considerable time and effort
has been expended evaluating such models to select the best
model for a particular crop–weed system (e.g., Cousens et al.
1987; Jasieniuk et al. 2001; Martin et al. 1987; O’Donovan et
al. 2005). Unfortunately, results of model evaluations have
often been disappointing with unclear or mixed outcomes
because of the limited number of models compared and the
lack of well-defined statistical criteria for selecting the best
model.

Model selection using information–theoretic criteria (Burn-
ham and Anderson 1998, 2002; Taper 2004) is a relatively

new branch of mathematical statistics that shows promise for
crop–weed competition modeling. The model selection
approach is an alternative to traditional null hypothesis
testing, which is normally used to evaluate crop–weed
competition models (e.g., Jasieniuk et al. 2001). The major
advantages of the model selection approach are that it allows
simultaneous assessment of multiple competing hypotheses
(models) rather than the comparison of only two (the null and
a single alternative) as is required in null hypothesis testing
(reviewed in Franklin et al. 2001; Johnson and Omland 2004;
Taper 2004). In addition, the statistical criteria for evaluating
models are clearly defined. In the model selection approach,
multiple candidate models are simultaneously and quantita-
tively evaluated in terms of the empirical evidence from the
data for one model over another. Information criteria are the
measures of empirical evidence for competing models
(Burnham and Anderson 1998, 2002; Taper 2004). Because
information criteria are estimators of the information lost
when a model is used to approximate reality, a model is
identified as ‘‘best’’ if it exhibits the minimum value of an
information criterion in comparison with the remaining
models. Further, the magnitude of differences in information
criterion values, DIC, between models indicates the strength
of evidence for one model over another (Taper 2004).
Ultimately, the model identified as best represents the
inference from the data and indicates the effects (i.e., model
and model parameters) best supported by the data (Burnham
and Anderson 1998, 2002). It has been suggested that model
misspecification leading to incorrect inference from data is a
major source of error in the quantification of scientific
evidence (Chatfield 1995; Taper 2004). The strength of the
model selection approach is that it allows rigorous evaluation
of the empirical support for multiple competing hypotheses
and thus significantly reduces the risk of model misidentifi-
cation and incorrect inference. That said, the best model
selected by information criteria will be the best of the
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candidate set of models examined. If the candidate set does
not include models appropriate for the crop–weed system
under study, the best model will perform poorly at describing
the data and a better model might be found later. Only
researchers who have knowledge of, and experience with, a
crop–weed system can assess the biological suitability of
models in a candidate set. The purpose of this paper is to
inform weed scientists of a relatively new approach that can
help them assess the statistical suitability of a set of candidate
models in describing crop–weed competition data.

The model selection approach is widely used to evaluate
competing models and make decisions concerning wildlife
and natural resources management ( Johnson and Omland
2004). However, with the exception of Wagner et al. (2007),
the approach has not been applied to weed management
despite its potential for selecting crop yield, or yield loss,
models to be used in bioeconomic models. In this study, our
goal was to evaluate multiple crop–weed competition models
to identify the model that best describes barley yield based on
data from field experiments conducted in Montana. Specif-
ically, our objectives were to: (1) fit crop–weed competition
models of varying complexity and functional form to data
from barley–wild oat competition experiments; (2) select the
best model, or models, based on the empirical evidence; and
(3) provide an example of how information–theoretic criteria
can be employed in the identification of models for weed
management decision aids, such as bioeconomic models.

Materials and Methods

Field Experiments. Barley–wild oat competition experiments
were conducted at three locations in Montana: the Arthur H.
Post Research Farm at Bozeman, the Central Agricultural
Research Center at Moccasin, and the Northwestern
Agricultural Research Center at Kalispell. Experiments were
conducted at Bozeman in 1993 and 1994, at Kalispell in
1993, and at Moccasin in 1994. Two independent experi-
ments (R1 and R2) were conducted at Kalispell in 1993. For
each location and year, experiments consisted of a complete
addition series arranged as a randomized complete block
design with three replications of 2.4 by 9.1 m plots. ‘Gallatin’
barley was planted at 0, 0.5, 1, and 2 times the locally
recommended seeding rate of 6.7 g m22 (160 to 200 seeds
m22) at a depth of 3.8 cm and row spacing of 30.5 cm. Wild
oat was sown at target infestation densities of 0, 10, 40, 160,
and 400 plants m22. Weeds other than wild oat were
manually removed throughout the growing season.

Sampling units consisted of two 0.25 m2 permanent
quadrats located randomly in each experimental plot. Times
of emergence of barley and wild oat seedlings were monitored
at Bozeman and Kalispell in 1993 and Bozeman and
Moccasin in 1994 by counting seedling numbers in each
quadrat 0, 4, 6, 8, 12, 14, 24, 32, or 0, 8, 10, 12, 16, 18, 28,
36 d after planting (DAP), respectively. The last sampling
time was determined by the last day seedlings were observed
to emerge. Percentage of seedlings emerged at each sampling
date was calculated based on the cumulative total of emerged
seedlings. Barley and wild oat densities were measured by
counting reproductive tillers within each quadrat just prior to
harvest when spikelets of both species were still intact. Barley
and wild oat plants in permanent quadrats were harvested,
counted, and the seed of each species separated and counted

prior to shattering. In addition, barley grain yield was
measured at maturity by harvesting 1.5 by 4.6 m areas at
the center of each plot with a combine harvester. Seeds of wild
oat plants had almost entirely shattered prior to combine
harvesting. Barley seeds harvested by hand from permanent
quadrats were added to those harvested by combine, and
barley yield calculated in terms of grams m22.

Values of the relative time of emergence of barley and wild
oat, T, in each quadrat were calculated from the cumulative
totals of emerged seedlings in two steps. First, we fit a simple
linear regression equation using SAS1 (Proc GLM) to the
cumulative percentage of emerged barley or wild oat seedlings
as a function of the number of days after planting. Second,
using the predicted regression lines, we estimated T as the
difference in number of days between barley and wild oat to
reach 50% seedling emergence. T was negative in value if wild
oat seedlings emerged before barley seedlings. Initially, we
used Richards’ family of growth models (Brown and Rothery
1993) to fit the seedling emergence data. However, too few
data points resulted in poor convergence of the nonlinear
model fits and/or unreasonable parameter estimates. Overall, a
linear regression model provided a better fit to the data. In
addition to estimating T at 50% seedling emergence, we also
estimated T at 20 and 80% cumulative emergence. T at 50%
emergence provided the largest differences in time of
emergence between barley and wild oat. Thus, we used the
estimates of T at 50% seedling emergence in the model
evaluations.

Candidate Models. We chose 25 a priori candidate models of
varying complexity (Table 1) to fit to the field data, including
models commonly used in the fields of weed science and
agroecology as well as lesser known models from population
ecology. We also modified components of existing models.
For all models, the response variable was crop yield (Y ).
Explanatory variables consisted of crop density (Dc), weed
density (Dw) and relative time of emergence of the crop and
weed (T ) although models differed in number of explanatory
variables and their functional specification. The number of
estimable parameters (K ) varied from two to seven among
models, which included K-1 structural parameters and one
residual variance parameter, s2. The structural parameters are
defined in Table 1.

In candidate models including weed density as a variable
(Table 1), crop yield is assumed to decrease nonlinearly with
increasing weed density. However, the relationship between
crop yield and crop density differs among models. Models 1A,
2A, 3A, 4A, 5A, 6A, 7A, 8A, 9A, and 10A specify a
relationship whereby increasing crop densities cause a steep
increase in yield at low crop densities but result in diminishing
yield returns at higher crop densities, presumably due to
increasing intraspecific competition. In contrast, models 1B,
2B, 3B, 4B, 5B, 6B, 7B, 8B, 9B, and 10B specify a linear
relationship between crop yield and crop density. Although a
linear relationship is unrealistic biologically, preliminary
analyses indicated that most crop–weed competition experi-
ments conducted in the field, including ours, do not include a
sufficient range of crop densities to detect yield losses due to
intraspecific competition. Thus, a linear model often better
describes the relationship between crop yield and crop density
in data obtained from competition experiments conducted in
the field.
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Table 1. Structure of 25 a priori candidate models of crop–weed competition. The response variable (Y ) is crop yield, and the explanatory variables are crop density
(Dc), weed density (Dw), and the time of emergence of the crop prior to the weed (T ).

Model Model structure No. parameters (K )a Model source

1A
Y~

jDc

1zjDc=Ymax
1{

iDw

ecTziDw=a

� �
6 Modified Jasieniuk et al. (2001)

1B
Y~jDc 1{

iDw

ecTziDw=a

� �
5 Modified Model 1Ab

1C
Y~

RcDc

1zacDc

1{
RwDw

ecTzawDw

� �
6 Modified Model 1Ab

1D
Y~RcDc 1{

RwDw

ecTzawDw

� �
5 Modified Model 1Ab

2A
Y~

jDc

1zjDc=Ymax
1{

iDw

1ziDw=a

� �
5 Jasieniuk et al. (2001); modified

Cousens (1985a, b)

2B
Y~jDc 1{

iDw

1ziDw=a

� �
4 Modified Model 2Ab

2C
Y~

RcDc

1zacDc

1{
RwDw

1zawDw

� �
5 Modified Model 2Ab

2D
Y~RcDc 1{

RwDw

1zawDw

� �
4 Modified Model 2Ab

3A
Y~

jDc

1zjDc=Ymax

3 Modified Model 1A

3C
Y~

RcDc

1zacDc

3 Modified Model 3Ab

3B 5 3D Y 5 jDc and Y 5 RcDc 2 Modified Model 3Ab

4A
Y~

RcDc

1zacDczawDw

4 Weiner (1982); Cousens et al. (1985b);
Brown and Rothery (1993)

4B
Y~

RcDc

1zawDw

3 Modified Model 4Ab

5A
Y~

RcDc

1zacDcze{cT awDw

5 Modified Model 4A; modified Cousens
et al. (1987)

5B
Y~

RcDc

1ze{cT awDw

4 Modified Model 5Ab

6A
Y~

RcDc

1zacDcz
e{cT awDw

1zbDw

6 Modified Model 5A

6B
Y~

RcDc

1z
e{cT awDw

1zbDw

5 Modified Model 6Ab

7A
Y~

RcDc

1zacDcz
e(h0zh1T)

1ze(h0zh1T)
awDw

6 Modified Model 5A

7B
Y~

RcDc

1z
e(h0zh1T)

1ze(h0zh1T)
awDw

5 Modified Model 7Ab

8A
Y~

RcDc

1zacDcz

e(h0zh1T)

1ze(h0zh1T)
awDw

1zbDw

7 Modified Model 7A

8B
Y~

RcDc

1z

e(h0zh1T)

1ze(h0zh1T)
awDw

1zbDw

6 Modified Model 8Ab

9A
Y~

RcDc

1zacDc

eiDwcT 5 Modified Model 5A

9B Y~RcDceiDwcT 4 Modified Model 9Ab

10A
Y~

RcDc

1zacDc

e{iDwe{cT 5 Modified Model 9A;
modified Brown and Rothery (1993)

10B Y~RcDce{iDwe{cT 4 Modified Model 10Ab

a There are K-1 structural parameters and one residual variance parameter, s2. Structural parameters include: j, initial rate of yield increase as crop density increases from
zero; Ymax, asymptotic maximum crop yield; i, initial rate of crop yield loss as weed density increases from zero; a, asymptotic maximum percent crop yield loss as weed
density increases to its maximum; c, rate at which i decreases towards zero as T becomes large; Rc, intrinsic growth rate of the crop; Rw, intrinsic growth rate of the weed; ac 5

coefficient of intraspecific competition; aw 5 coefficient of interspecific competition; b, coefficient of weed intraspecific competition; and the shape parameters, h0 and h1.
b See Materials and Methods section for details of the model modification.
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Models 1C, 2C, and 3C (Table 1) are models 1A, 2A, and
3A, respectively, that have been reformulated to make

ac~
j

Ymax

and

aw~ i
a :

Parameter j estimates the initial rate of yield increase as barley
density increases from zero, Ymax is the asymptotic maximum
crop yield, i estimates the initial rate of yield loss as weed
density increases from zero, and a is the asymptotic maximum
percent yield loss as weed density increases to its maximum.
The reformulations were necessary because we were unable to
obtain maximum likelihood estimates of parameters Ymax and
a for most data sets using the original models. The inability to
obtain maximum likelihood estimates of these parameters
probably resulted from the limited range of barley and wild
oat densities in the data sets. Despite the estimation problems,
we included the original models in our set of candidates
because they are used in the field of weed science. Models 1D,
2D, and 3D are variations of models 1C, 2C, and 3C,
respectively, that specify a linear relationship between crop
yield and crop density. Model 3B ( jDc) is equivalent to Model
3D (RcDc) resulting in a total of 25 candidate models
(Table 1).

Regression Analyses. We fit the 25 candidate models to the
experimental data from each field location and year using the
maximum likelihood estimation method of SAS (PROC NLP)
with lognormal error structure. We assumed a lognormal error
structure because crop yield values are positive and because
residuals were not symmetrically distributed but increased with
increasing expected values of barley yield.

Model Selection. We used four information criteria as
measures of empirical evidence supporting each competition
model relative to the others, and to identify the best model for
each data set. The four information criteria were: (1) the
Akaike Information Criterion, AIC (Akaike 1973); (2) a
second-order small-sample version of AIC, namely, AICc

(Burnham and Anderson 1998; Hurvich and Tsai 1989;
Saguira 1978); (3) the Bayesian (or Schwartz’s) Information
Criterion, BIC (or SIC) (Schwartz 1978); and (4) the
Information Complexity criterion, ICOMP (Bozdogan
1990, 2000; Bozdogan and Haughton 1998). Information
criteria are estimators of the information lost when a model is
used to approximate reality (Burnham and Anderson 1998,
2002). Thus, the model with the minimum value of AIC,
AICc, BIC, or ICOMP is the model identified as ‘‘best’’ by
each information criterion (Franklin et al. 2001; Taper 2004).
To determine how much better the best model fit a data set
relative to other models, we computed the difference, Di,
between the AIC, AICc, BIC, and ICOMP values for each
model i and the minimum AIC, AICc, BIC, and ICOMP
values obtained for the best model.

Results and Discussion

Model Fits to Individual Data Sets. The 25 candidate
models differed in how well they described the five data sets,
as measured by the four information criteria (Table 2).

Clearest results were obtained for data sets from Kalispell.
Three of the four information criteria, AIC, AICc, and BIC,
indicated that models 1A and 1C best explained barley yield
based on two data sets (R1 and R2) from barley–wild oat
competition experiments conducted at Kalispell in 1993
(Table 2). Moreover, the data’s support for models 1A and
1C was much stronger than the support for the remaining 23
models, as revealed by DAIC, DAICc, and DBIC values that
greatly exceeded 10 for all remaining models, with the
exception of model 10A, which had Di values ranging from
5.5 to 7.8. The larger Di is, the worse the model is at describing
the data. As a rough rule of thumb, Di values greater than 10
indicate models with essentially no support from the data,
whereas Di values from about 4 to 7 indicate models with
substantially less support than the best model (Burnham and
Anderson 1998). Strong support from the data for models 1A
and 1C is indicated by Di values # 2. Because model 1C is
simply a reformulated version of model 1A (see Materials and
Methods), both of the selected models are essentially
equivalent. Strong support for models 1A and 1C indicates
that the three explanatory variables in the models, barley tiller
density (Dc), wild oat tiller density (Dw), and the relative time
of emergence of barley and wild oat (T ) all influenced barley
yield in Kalispell in 1993. Further, the high values of Di for
other models with the same three variables indicates that the
mathematical relationship between barley yield and Dc, Dw, T
in models 1A and 1C is better supported by the data than the
relationship between the variables in other models.

In contrast to AIC, AICc, and BIC, the information
criterion ICOMP selected model 3C as the best model of
barley yield for Kalispell in 1993 (Table 2). Model 3C is a
much simpler model than the models 1A and 1C selected by
AIC, AICc, and BIC (Table 1). Model 3C consists of a single
explanatory variable, i.e., crop density, and two estimable
structural parameters. In contrast, the best models selected by
AIC, AICc, and BIC consisted of three explanatory variables
and five estimable structural parameters. The different result
obtained using ICOMP reflects its larger penalty term for
overparameterization relative to the other information criteria.
The aim of model selection using information criteria is to
choose the most parsimonious model that provides an
accurate approximation of the structural information in a
data set (Burnham and Anderson 1998). The measure of
parsimony varies among information criteria, however. AIC,
AICc, and BIC penalize models with greater complexity, where
complexity is characterized by the number of parameters.
ICOMP also penalizes models with greater complexity.
However, ICOMP characterizes model complexity not only
by the number of parameters but also by their redundancy and
estimation instability (Bozdogan 2000; Bozdogan and
Haughton 1998; J. Ferguson et al., unpublished data). Thus,
the ICOMP penalty term includes the number of model
parameters as well as the degree of interdependence among
them. Parameters with highly correlated values are considered
redundant. Although ICOMP selected model 3C as the best
model for the data from Kalispell, the R1 data set also
supported models 1A, 3A, and 3B 5 3D, as indicated by
DICOMP values # 2 (Table 2).

For barley–wild oat competition experiments conducted in
Bozeman, AIC, AICc, and BIC revealed that the model best
approximating the data differed between 1993 and 1994
(Table 2). In 1993, AIC and AICc selected model 1C as the
best model, which was also the model most highly supported
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Table 2. Summary of the fit of 25 a priori crop yield models to individual data sets from three locations in Montana. Each model’s structure is shown in Table 1. K is
the number of parameters in the regression model plus 1 for s2, n is the number of data points in the data set, Max log (L) is the maximized log-likelihood value, AIC is
Akaike’s Information Criterion, AICc is Akaike’s Information Criterion with small-sample (second-order) bias adjustment, BIC is the Bayesian Information Criterion, and
ICOMP is Bozdogan’s Information Complexity Criterion. DAIC 5 AIC 2 min AIC; DAICc 5 AICc 2 min AICc; DBIC 5 BIC 2 min BIC; DICOMP 5 ICOMP 2
min ICOMP. The best approximating model for a data set is indicated by Di 5 0 in bold type. Models with 0 , Di # 2 in bold type also have substantial support from
the data and should receive consideration in making inferences. Missing values (—) indicate models with at least one parameter that could not be estimated for the
data set.

Location Year Model K n Max log(L) AIC DAIC AICc DAICc BIC DBIC ICOMP DICOMP

Bozeman 1993 1A 6 125 105.858 — — — — — — — —
1B 5 125 118.858 — — — — — — — —
1C 6 125 122.166 2232.332 0 2231.620 0 2215.362 4.881 2185.646 34.332
1D 5 125 120.409 2230.818 1.514 2230.313 1.307 2216.676 3.567 2207.234 12.744
2A 5 125 102.926 — — — — — — — —
2B 4 125 117.364 — — — . — — — —
2C 5 125 120.524 2231.048 1.284 2230.544 1.076 2216.907 3.336 2189.309 30.669
2D 4 125 119.026 2230.052 2.280 2229.719 1.901 2218.739 1.504 2205.595 14.383
3A 3 125 95.603 — — — — — — — —

3B 5 3D 2 125 95.603 2187.207 45.125 2187.109 44.511 2181.550 38.693 2187.871 32.106
3C 3 125 105.988 2205.976 26.356 2205.778 25.842 2197.491 22.752 2193.044 26.934
4A 4 125 117.966 2227.931 4.401 2227.598 4.022 2216.618 3.625 2198.599 21.379
4B 3 125 117.364 2228.728 3.604 2228.529 3.091 2220.243 0 2215.963 4.014
5A 5 125 119.261 2228.521 3.811 2228.017 3.603 2214.379 5.864 2201.119 18.859
5B 4 125 118.858 2229.715 2.617 2229.382 2.238 2218.402 1.841 2219.270 0.708
6A 6 125 121.086 2230.173 2.159 2229.461 2.159 2213.203 7.040 2190.228 29.750
6B 5 125 119.867 2229.733 2.599 2229.229 2.391 2215.592 4.651 2207.740 12.237
7A 6 125 119.260 2226.520 5.812 2225.808 5.812 2209.550 10.693 2181.602 38.376
7B 5 125 118.857 2227.714 4.618 2227.210 4.410 2213.572 6.671 2200.321 19.656
8A 7 125 121.086 2228.173 4.159 2227.215 4.405 2208.375 11.868 2157.247 62.731
8B 6 125 119.866 2227.732 4.600 2227.020 4.600 2210.762 9.481 2191.573 28.405
9A 5 125 106.917 2203.835 28.497 2203.330 28.290 2189.693 30.550 2180.389 39.589
9B 4 125 98.170 2188.340 43.992 2188.007 43.613 2177.027 43.216 2158.786 61.191

10A 5 125 120.081 2230.162 2.170 2229.657 1.963 2216.020 4.223 2202.989 16.989
10B 4 125 119.388 2230.777 1.555 2230.444 1.176 2219.464 0.779 2219.978 0

Bozeman 1994 1A 6 169 222.036 — — — — — — — —
1B 5 169 215.629 — — — — — — — —
1C 6 169 222.489 2432.978 9.547 2432.460 9.546 2414.199 9.546 2382.145 24.800
1D 5 169 216.160 2422.319 20.206 2421.951 20.055 2406.670 17.075 2392.531 14.414
2A 5 169 220.669 — — — — — — — —
2B 4 169 214.156 — — — — — — — —
2C 5 169 220.668 2431.337 11.188 2430.969 11.037 2415.687 8.058 2383.415 23.530
2D 4 169 214.335 2420.670 21.855 2420.426 21.580 2408.151 15.594 2391.919 15.026
3A 3 169 151.037 — — — — — — — —

3B 5 3D 2 169 151.037 2298.075 144.450 2298.002 144.004 2291.815 131.930 2297.744 109.201
3C 3 169 157.823 2309.646 132.879 2309.500 132.506 2300.256 123.489 2295.629 111.316
4A 4 169 220.811 2433.623 8.902 2433.379 8.627 2421.103 2.642 2398.242 8.704
4B 3 169 214.156 2422.312 20.213 2422.166 19.840 2412.922 10.823 2405.969 0.977
5A 5 169 222.934 2435.868 6.657 2435.500 6.506 2420.218 3.527 2396.899 10.046
5B 4 169 215.629 2423.257 19.268 2423.014 18.992 2410.738 13.007 2406.195 0.750
6A 6 169 222.938 2433.876 8.649 2433.358 8.648 2415.097 8.648 2380.082 26.863
6B 5 169 216.163 2422.326 20.199 2421.957 20.049 2406.676 17.069 2392.865 14.080
7A 6 169 227.262 2442.525 0 2442.006 0 2423.745 0 2404.777 2.168
7B 5 169 219.351 2428.701 13.824 2428.333 13.673 2413.052 10.693 2403.447 3.498
8A 7 169 227.266 2440.531 1.994 2439.836 2.170 2418.622 5.123 2388.006 18.939
8B 6 169 216.163 2420.326 22.199 2419.808 22.198 2401.547 22.198 2360.700 46.245
9A 5 169 163.886 2317.771 124.754 2317.403 124.603 2302.121 121.624 2293.117 113.828
9B 4 169 160.261 2312.522 130.003 2312.278 129.728 2300.002 123.743 2288.080 118.866

10A 5 169 221.288 2432.575 9.950 2432.207 9.799 2416.926 6.819 2395.556 11.389
10B 4 169 216.092 2424.183 18.342 2423.940 18.066 2411.664 12.081 2406.945 0

Kalispell R1 1993 1A 6 68 32.582 253.164 0 251.787 0 239.847 0 7.752 1.377
1B 5 68 21.994 13.988 67.152 14.956 66.743 25.086 64.933 37.438 31.063
1C 6 68 32.427 252.855 0.309 251.478 0.309 239.538 0.309 23.553 17.178
1D 5 68 22.019 14.037 67.201 15.005 66.792 25.135 64.982 32.656 26.281
2A 5 68 19.200 — — — — — — — —
2B 4 68 23.019 14.038 67.202 14.673 66.460 22.916 62.763 53.345 46.970
2C 5 68 19.321 — — — — — — — —
2D 4 68 22.847 13.694 66.858 14.329 66.116 22.572 62.419 26.599 20.224
3A 3 68 8.793 211.585 41.579 211.210 40.577 24.927 34.920 8.235 1.861

3B 5 3D 2 68 23.019 10.038 63.202 10.223 62.010 14.477 54.324 7.492 1.117
3C 3 68 8.793 211.585 41.579 211.210 40.577 24.927 34.920 6.375 0
4A 4 68 10.953 213.906 39.258 213.271 38.516 25.028 34.819 48.437 42.062
4B 3 68 22.509 11.017 64.181 11.392 63.179 17.676 57.523 20.247 13.873
5A 5 68 12.945 215.889 37.275 214.922 36.865 24.792 35.055 40.062 33.688
5B 4 68 21.798 11.596 64.760 12.231 64.018 20.474 60.321 47.364 40.989
6A 6 68 17.406 222.811 30.353 221.434 30.353 29.494 30.353 41.260 34.885
6B 5 68 22.189 — — — — — — — —
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by the data sets from Kalispell. BIC selected model 4B.
However, AIC, AICc, and BIC also indicated that several other
models had substantial support from the data, as indicated by
Di values # 2 in Table 2. In contrast, AIC, AICc, and BIC
selected model 7A as the best model of barley yield based on
the 1994 field data. Model 7A has six parameters and complex
exponential terms (Table 1). In contrast, ICOMP selected a
much simpler best model, 10B, with only four parameters,
again reflecting the greater stringency of ICOMP. For field
data from Moccasin, the results based on AIC and AICc were
much less conclusive than those obtained based on BIC and

ICOMP (Table 2). No one model had strong support from
the data, according to AIC and AICc,, rather, many were
almost equally supported. In contrast, BIC and ICOMP
selected model 3B 5 3D as the best model. Further, the high
DBIC and DICOMP values obtained for the remaining 24
models (Table 2) indicated that no other model had strong
support from the data. The best model, 3B 5 3D, is the
simplest model of the 25 a priori candidate models
considered. Model 3B 5 3D is a linear model with a single
explanatory variable, crop density, and one estimable
structural parameter.

Location Year Model K n Max log(L) AIC DAIC AICc DAICc BIC DBIC ICOMP DICOMP

7A 6 68 19.304 226.607 26.557 225.230 26.557 213.290 26.557 34.214 27.840
7B 5 68 21.798 13.596 66.760 14.564 66.351 24.694 64.541 57.035 50.660
8A 7 68 19.293 224.587 28.577 222.720 29.067 29.050 30.797 20.735 14.360
8B 6 68 20.568 13.136 66.300 14.513 66.300 26.453 66.300 86.911 80.536
9A 5 68 8.794 27.588 45.576 26.620 45.167 3.509 43.356 30.461 24.086
9B 4 68 22.814 13.628 66.792 14.263 66.050 22.506 62.353 37.313 30.938

10A 5 68 25.923 — — — — — — — —
10B 4 68 21.814 11.627 64.791 12.262 64.049 20.506 60.353 39.262 32.888

Kalispell R2 1993 1A 6 71 39.338 266.676 0 265.363 0 253.099 0 213.841 5.620
1B 5 71 10.240 210.479 56.197 29.556 55.807 0.834 53.933 1.372 20.832
1C 6 71 39.338 266.676 0 265.363 0 253.099 0 4.646 24.106
1D 5 71 10.243 210.487 56.189 29.564 55.799 0.826 52.273 — —
2A 5 71 25.519 241.038 25.638 240.115 25.248 229.725 23.374 12.690 32.150
2B 4 71 10.245 210.491 56.185 29.567 55.796 0.823 53.922 9.196 28.656
2C 5 71 25.519 241.038 25.638 240.115 25.248 229.725 23.374 6.600 26.061
2D 4 71 10.248 — — — — — — — —
3A 3 71 20.847 235.694 30.982 235.336 30.027 228.906 24.193 211.933 7.528

3B 5 3D 2 71 9.604 215.208 51.468 215.032 50.331 210.683 42.416 217.137 2.324
3C 3 71 20.847 235.694 30.982 235.336 30.027 228.906 24.193 219.460 0
4A 4 71 23.197 238.393 28.283 237.787 27.576 229.342 23.757 1.170 20.630
4B 3 71 10.531 215.061 51.615 214.703 50.660 28.273 44.826 25.430 14.031
5A 5 71 27.007 244.014 22.662 243.091 22.272 232.701 20.398 22.375 41.835
5B 4 71 10.655 213.310 53.366 212.704 52.659 24.259 48.840 24.348 15.112
6A 6 71 28.576 245.151 21.525 243.838 21.525 231.575 21.524 17.788 37.249
6B 5 71 10.293 210.585 56.091 29.662 55.701 0.728 53.827 — —
7A 6 71 27.011 242.022 24.654 240.709 24.654 228.446 24.653 25.909 45.370
7B 5 71 10.791 211.583 55.093 210.660 54.703 20.269 52.830 16.669 36.130
8A 7 71 24.489 — — — — — — — —
8B 6 71 11.301 — — — — — — — —
9A 5 71 20.957 231.913 34.763 230.990 34.373 220.600 32.499 210.606 8.854
9B 4 71 10.382 212.763 53.913 212.157 53.206 23.713 49.386 1.804 21.265

10A 5 71 34.442 258.883 7.793 257.960 7.403 247.570 5.529 27.482 11.979
10B 4 71 10.600 213.200 53.476 212.594 52.769 24.150 48.949 24.486 14.975

Moccasin 1994 1A 6 126 137.225 — — — — — — — —
1B 5 126 137.959 2265.917 0.456 2265.417 0.761 2251.736 8.867 2253.505 13.172
1C 6 126 138.145 2264.291 2.082 2263.585 2.593 2247.273 13.330 2239.360 27.317
1D 5 126 137.959 2265.917 0.456 2265.417 0.761 2251.736 8.867 2252.932 13.745
2A 5 126 136.025 — — — — — — — —
2B 4 126 136.207 2264.413 1.960 2264.082 2.096 2253.068 7.535 2253.910 12.767
2C 5 126 136.223 2262.446 3.927 2261.946 4.232 2248.265 12.338 2238.361 28.316
2D 4 126 136.207 2264.413 1.960 2264.082 2.096 2253.068 7.535 2253.046 13.631
3A 3 126 135.138 — — — — — — — —

3B 5 3D 2 126 135.138 2266.275 0.098 2266.178 0 2260.603 0 2266.677 0
3C 3 126 135.393 2264.787 1.586 2264.590 1.588 2256.278 4.325 2249.953 16.724
4A 4 126 135.428 2262.855 3.518 2262.525 3.653 2251.510 9.093 2236.502 30.175
4B 3 126 135.152 2264.305 2.068 2264.108 2.070 2255.796 4.807 2255.114 11.563
5A 5 126 138.049 2266.097 0.276 2265.597 0.581 2251.916 8.687 2237.566 29.111
5B 4 126 135.456 2262.912 3.461 2262.582 3.596 2251.567 9.036 2251.694 14.983
6A 6 126 137.339 2262.677 3.696 2261.971 4.207 2245.659 14.944 2234.033 32.645
6B 5 126 137.263 2264.526 1.847 2264.026 2.152 2250.344 10.259 2249.511 17.166
7A 6 126 136.236 — — — — — — — —
7B 5 126 138.187 2266.373 0 2265.873 0.305 2252.192 8.411 2227.158 39.519
8A 7 126 138.321 2262.642 3.731 2261.693 4.485 2242.788 17.815 2222.486 44.191
8B 6 126 138.277 2264.553 1.820 2263.848 2.330 2247.536 13.067 2238.608 28.070
9A 5 126 136.460 2262.920 3.453 2262.420 3.758 2248.738 11.865 2232.634 34.043
9B 4 126 136.046 2264.092 2.281 2263.762 2.416 2252.747 7.856 2239.925 26.752

10A 5 126 137.935 2265.870 0.503 2265.370 0.808 2251.688 8.915 2237.866 28.811
10B 4 126 135.439 2262.877 3.496 2262.547 3.631 2251.532 9.071 2251.356 15.321

Table 2. Continued.
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Model Fits to the Pooled Data Set. Consistent with the
results obtained for individual data sets, AIC, AICc, and BIC
selected a more complex model than ICOMP for data pooled
over locations and years (Table 3). AIC, AICc, and BIC
selected model 1C as the model of barley yield best supported
by the pooled data. Model 1C also best explained barley yield
in the individual data sets from Kalispell and Bozeman in
1993. Large values of Di for the other models (Table 3)
indicate that Dc, Dw, T, and their functional relationship with
barley yield in model 1C are more strongly supported by the
pooled data than the variables and their functional specifica-
tion in the remaining candidate models.

As observed for individual data sets, ICOMP selected a
much simpler model, 4B, as the best approximation of the
information in the pooled data. Model 4B consists of two
explanatory variables, Dc and Dw, and two structural
parameters, Rc and aw. The model describes a linear
relationship between barley yield and barley density. Selection
of this model as the best supported by the data indicates that
the pooled data provide no evidence of intraspecific
competition affecting barley yield. The pooled data did
provide evidence of interspecific competition, however,
because model 4B specifies a negative relationship between
crop yield and weed density. Relative time of emergence of
barley and wild oat was not a variable in the selected model.

Variation Among Sites and Years. As observed for barley in
this study and other crops in previous studies, crop–weed
interference relationships often vary among sites and years
(e.g., Fischer et al. 2004; Jasieniuk et al. 1999, 2001;
Lindquist et al. 1999). This is not surprising, given the
numerous factors and processes that affect crop yield

including environmental variables such as soil moisture and/
or fertility, which can vary from year to year and site to site, as
well as biological processes, such as intraspecific and
interspecific competition. A major strength of the model
selection approach using information–theoretic criteria is that
simultaneous comparison of many models allows more
straightforward identification of the variables and processes
affecting crop yield at a site in a particular year than the
conventional hypothesis testing approach. In this study, for
instance, identification of models 1A and 1C by the 1993 data
from Kalispell indicated that increasing densities of both
barley and wild oat, as well as the relative time of emergence
of two species, influenced barley yields. The selected models
pointed to intraspecific and interspecific competition as
important processes determining barley yield in Kalispell. In
contrast, data from Moccasin in 1994 identified a linear
model with a single variable, crop density, and one estimable
structural parameter. Strong support for a linear model over
all others indicates that the Moccasin data provided no
evidence of intraspecific or interspecific competition and
suggests that abiotic, rather than biotic, factors determined
barley yield in Moccasin in 1994. Although data from only
one year were available for each location, support of the
different best models for each location corresponds well with
differences in average annual precipitation and barley yields
between the two sites. The northwestern region of Montana,
where Kalispell is located, is the wettest region of the state and
has high average barley yields, whereas the central region, where
Moccasin is located, is the driest with correspondingly lower
yields (http://plantsciences.montana.edu/Crops/barley). It is
not surprising, therefore, that biotic factors played a greater role
in determining barley yields in Kalispell, whereas abiotic factors
are likely to have been more important in Moccasin.

Table 3. Summary of the fit of 25 a priori crop yield models to the full data set resulting from pooling individual data sets over locations and years. gK is the number of

model parameters, gn is the number of data points, and g Maximized log L h
_

s
_2
���data

� �� �
is the maximized log-likelihood value, summed across the individual data sets.

Di 5 0 indicates the best model for the pooled data. Only models in which all parameters could be estimated were included in the analysis. Missing values (—) indicate
excluded models.

Model gK gn

g Maximized

log L h
_

s
_2
���data

� �� �
DAIC DAICc DBIC DICOMP

1A 30 559 537.0 — — — —
1B 25 559 480.69 — — — —
1C 30 559 554.57 0 0 0 245.45
1D 25 559 482.75 133.64 132.54 112.00 192.17
2A 25 559 504.34 — — — —
2B 20 559 474.95 — — — —
2C 25 559 522.26 — — — —
2D 20 559 476.97 — — — —
3A 15 559 411.42 — — — —
3B 5 3D 10 559 388.36 292.42 289.28 205.88 99.95
3C 15 559 428.84 221.46 218.81 156.55 144.84
4A 20 559 508.35 72.44 70.46 29.16 358.237
4B 15 559 474.69 129.76 127.11 64.85 0
5A 25 559 520.20 58.74 57.66 37.11 294.55
5B 20 559 478.80 131.54 129.57 88.27 145.46
6A 30 559 527.34 54.46 54.44 54.44 281.75
6B 25 559 481.40 — — — —
7A 30 559 529.07 — — — —
7B 25 559 485.39 128.36 127.27 106.73 251.19
8A 35 559 530.46 — — — —
8B 30 559 485.04 — — — —
9A 25 559 437.01 225.12 224.02 203.47 260.47
9B 20 559 402.05 285.04 283.08 241.78 233.26
10A 25 559 539.67 — — — —
10B 20 559 479.71 129.72 127.76 86.46 106.37
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Variation among Information Statistics. For all data sets,
including the pooled data, AIC and AICc generally gave
similar results and selected the same best models. Because
sample sizes were large relative to the number of estimated
parameters in each model, the small-sample bias correction
term in AICc did not influence choice of the best model,
although the number of models with support from the data
differed for two data sets. BIC selected the same best model as
AIC and AICc for four of the five individual data sets as well as
the pooled data. For the remaining data set (Bozeman 1993),
BIC selected a model of lower order (dimension) than AIC
and AICc. BIC also differed from AIC and AICc by indicating
that the Moccasin data only supports one model, i.e., model
3B (Table 4), which is the simplest model in the set of
candidate models (Table 1). AIC and AICc are generally known
to overparameterize data and select models of the maximum
order allowed (Bozdogan 1987; Taper 2004). In contrast, BIC
generally selects models of lower order than AIC and AICc, as
was the case here (Table 4), and does not tend to over-
parameterize. Of the four information criteria used in this
study, ICOMP generally selected the simplest best model for
each data set. Because ICOMP ’s penalty term takes into
account not only the number of model parameters but also the
degree of interdependence among them (Bozdogan 2000;
Bozdogan and Haughton 1998; J. Ferguson et al., unpublished
data), models of lower order are generally selected by ICOMP
in contrast to AIC, AICc, or BIC, as discussed previously.

Selection of a Barley Yield Model. Whether to use AIC,
AICc, BIC, or ICOMP as the criterion for model selection
depends on the purpose for which models are used (Cox
1990; Taper 2004). In weed management bioeconomic
models, crop–weed competition equations are primarily used

to predict economic thresholds. For minimizing prediction
errors, AIC or AICc often can be an appropriate selection
criterion despite its tendency to overparameterize. In this
study, BIC, AIC, and AICc all selected the same model (1C)
for the pooled data and most of the individual data sets
(Table 4). Thus, based on the data and models analyzed here,
our results strongly point to model 1C as the best yield
equation to use in a barley–wild oat bioeconomic model. In
contrast to BIC, AIC, and AICc, the information criterion
ICOMP selected several different best models for the
individual data sets as well as a unique one for the pooled
data, thus making it difficult to confidently choose a yield
model using this information criterion. Although yield model
1C is clearly the best candidate for a bioeconomic model
based on the consensus of three of the four information
criteria and the data used in this study, it might not remain
the best model as more experimental data become available,
including data from more years and sites and a wider range of
barley and wild oat densities. However, an additional strength
of the information–theoretic approach is that it readily lends
itself to the addition and comparison of more datasets and
models as they become available.

Strengths of Model Selection Using an Information–
Theoretic Approach. Model selection using information–
theoretic criteria shows promise for crop–weed competition
modeling. The approach allows simultaneous assessment of
multiple crop yield or yield loss models, which are ranked and
quantitatively assessed in terms of the evidence from experi-
mental data for one model over another. By simultaneously
evaluating the empirical support for multiple competing
models, the information–theoretic approach significantly re-
duces the risk of model misidentification and poor model
performance (Burnham and Anderson 1998, 2002; Johnson
and Omland 2004; Taper 2004). Moreover, the set of candidate
models can be reevaluated in a straightforward manner as
additional crop–weed competition data sets and models become
available. Selection of equations for the prediction of crop yields
or yield losses is central to the development of bioeconomic
models for weed management. Information–theoretic statistics
offer a rigorous, objective method for identifying models for
such weed management decision tools.

Sources of Materials

1 SAS System for Windows V8, SAS Institute Inc., Cary, NC
27513.
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